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The renin—angiotensin system (RAS) is a major 
physiological mechanism that regulates the blood pres
sure and fluid/electrolyte balance in normal and patho
physiological conditions.1 The clinical success of angio-
tensin-converting enzyme (ACE) inhibitors2 in the 
treatment of hypertension and congestive heart failure 
has made the RAS a major target for drug discovery 
programs in the pharmaceutical industry.3 Despite 
their wide clinical use, the ACE inhibitors suffer from 
occasional side effects, such as dry cough and angio
neurotic edema.4 These side effects are thought to be 
due to elevation of bradykinin and substance P levels, 
caused by inhibition of the degradation of these pep
tides.5 Alternatively, the most direct mode of interven
ing in the RAS, possibly with minimal potential side 
effects, is to inhibit specifically interactions of the 
primary effector hormone angiotensin II (All) at the 
receptor level.6 All receptors are present on the mem
branes of target tissues and organs, and two major 
subtypes of the receptors,7 designated ATi and AT2, 
have been identified in a variety of animal and human 
tissues.8 At the present time, the major physiological 
functions of All appear to be associated with the 
G-protein-coupled ATi receptors,9 and antagonists di
rected toward this receptor subtype offer a promising 
approach to novel antihypertensive agents.10 The func
tional role of the AT2 receptor has yet to be clearly 
demonstrated.11 

The discovery of ATi-selective All antagonist losartan 
(DuP 753; MK 954; la)12 and its high-affinity metabolite 
EXP3174 (lb)13 has generated significant interest in the 
search for other nonpeptide All antagonists bearing 
novel heterocyclic elements.14 The tetrazole group is a 
common acidic function present in many of these 
antagonists, including the potent imidazopyridine an
tagonist L-158,809 (2)15 reported from our laboratories. 
Despite its prolonged in vivo duration of action in rats, 
L-158,809 displayed a shorter duration of action in 
rhesus monkeys15c and dogs16 after intravenous admin-
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istration, a result which may be attributed to its rapid 
metabolism and clearance via glucuronidation of the 
tetrazole moiety in these species.17 We envisaged that 
replacing the tetrazole moiety of L-158,809 with an 
acidic function resistant to glucuronidation might im
prove its pharmacological properties. Toward this goal, 
several acidic groups, including acidic heterocyles, were 
considered.18 On the basis of the potential isosteric 
relationships and p.K"a considerations, we selected the 
acylsulfonamide (SO2NHCOR) group as a potential 
replacement for the tetrazole moiety.21 Recently, we 
have shown that incorporation of acylsulfonamides as 
tetrazole equivalents led to several series of potent All 
antagonists,23 and several of these antagonists exhibited 
favorable pharmacological properties compared to their 
tetrazole counterparts.23bc In this communication, we 
report the identification and pharmacological charac
terization of MK-996 (3e, L-159,282), a highly potent, 
ATi-selective, and orally active imidazo[4,5-fo]pyridine 
biphenylacylsulfonamide antagonist, which is currently 
in phase II clinical trials for the treatment of hyperten
sion.24 

The synthesis of imidazo[4,5-6]pyridine biphenyl-
acylsulfonamides 3a -3e is illustrated in Scheme 1. 
Alkylation of the sodium salt of 5,7-dimethyl-2-ethylimi-
dazo[4,5-6]pyridine (4)15a with 4'-(bromomethyl)-l,l'-
biphenyl-2-(iV-ter£-butyl)sulfonamide (5)23a gave after 
purification the desired N3-alkylated product 6,25 which 
upon treatment with anhydrous trifluoroacetic acid 
(TFA) at ambient temperature afforded the sulfonamide 
7. Reaction of the sulfonamide 7 with acylimidazoles, 
obtained by treating carboxylic acids with l,l'-carbon-
yldiimidazole (CDI), in the presence of 1,8-diazabicyclo-
[5.4.0]undec-7-ene (DBU), provided the desired acylsul
fonamides 3a -3e (Table 1) in good yields.26 Alter
natively, acylation of 7 with acid chlorides in pyridine 
afforded the acylsulfonamides in fair yields. 
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Scheme 1 
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a Reagents: (a) NaH, DMF, 50 0C, 3 h (76%); (b) TFA, 25 0C, 8 h (98%); (c) RCOOH, l,l'-carbonyldiimidazole, THF, reflux; DBU, THF, 
50 0C, 12 h (70-90%); (d) RCOCl, pyridine, 25 0C, 12 h (40-50%). 

Table 1. Imidazo[4,5-6]pyridine Biphenylacylsulfonamides 

Me 
,N 

SO2NHCOR 

compd 

3a 
3b 
3c 
3d 

3e 
(MK-996) 

2 

l a 
l b 

R 

Me 
rc-Pr 
i-Pr 
C-Pr 

Ph 

L-158,8098 

Losartane 

EXP3174" 

IC50 

ATi" 

2.2 
0.27 
0.21 
0.68 

0.20 

0.3 

50 
6 

(nM) 

AT2
6 

>10000 
3600 
1800 
2400 

2900 

50000 

50000 
50000 

conscious rats 

dose 
(mg/kg)" 

1.0, iv 
1.0, iv 
0.1, iv 
0.1, iv 
0.3, po 
0.03, iv 
0.1, iv 
1.0, po 
0.1, po 
0.1, iv 
0.1, po 

% peak 
inhibn of 

All pressor 
response'' 

100 ± 0 
99 ± 1 

100 ± 0 
95 ± 5 
99 ± 5 
78 ± 5 
94 ± 2 
99 ± 1 
64 ± 4 
85 ± 5 
75 ± 6 

duration 
of action 

(h) 

3.5 
>6 

5 
>6 
>6 

6 
6 

>6 
>5 
>6 
>6 

a Rabbit aorta. 6 Rat midbrain.c iv = intravenously adminis
tered; po = orally administered. d The protocol used is described 
in ref 15c. e The data from ref 15. 

The in vitro receptor binding affinities (IC50 values)273 

were determined using rabbit aorta (ATi)15b and rat 
midbrain (AT2)27b receptor preparations. Table 1 indi
cates that imidazo[4,5-6!pyridine biphenylacylsulfona
mides 3a -3e are ATi-selective antagonists with potency 
similar to the corresponding tetrazole compound L-158,-
809, although their AT2 receptor binding affinities are 
increased somewhat.28 From the binding data it is 
evident that both alkanoyl- and benzoylsulfonamide 
groups are well-accommodated by the ATi receptor.29 

The benzoylsulfonamide 3e (MK-996) exhibited excel
lent ATi receptor binding affinity (IC50 = 0.2 nM)30 and 
selectivity (Table 1). Scatchard analysis of specific 
binding of [126I]SaT1,Ile8-AII to rabbit aorta (ATi) in the 
presence and absence of the antagonist indicated com
petitive and reversible binding of MK-996 to the ATi 
receptor with an estimated Ki of 0.48 nM. In functional 
studies, the antagonist (5 nM) blocked All-stimulated 
aldosterone release in rat adrenal cortical cells, shifted 
the All concentration-response curve to the right 
without altering the maximal contractile response, and 
exhibited no agonist activity. The estimated pA2 value 
of 10.3 confirmed that MK-996 is a high affinity 

Table 2. In Vivo Data of MK-996 

rhesus monkeys (n 

dose % inhibn of 
(mg/kg) All response 

0.03, iv 44 ± 9 
0.1, iv 85 ± 2 
0.1, po 47 ± 5 
0.3, po 71 ± 2 

> 2)a 

duration 
(h) 

>3 
>6 
~ 3 
>5 

conscious dogs (n 

dose % inhibn of 
(mg/kg) All response 

0.1, iv 80 ± 1 
0.3, po 95 ± 5 
1.0, po 95 ± 5 

>2f 
duration 

(h) 

4 
>6 

>24 
a Sodium/volume-depleted animals; for protocol see ref 15c. 

b Normotensive mongrel dogs.35 

antagonist, and is approximately 250-fold more potent 
than losartan (pA2 = 7.9).31 MK-996 exhibited high 
specificity for the ATi receptor versus other G-protein-
coupled receptors.32 

The in vivo activity of imidazopyridine acylsulfona-
mides 3 a - 3 e was evaluated by assessing the inhibition 
of the pressor responses to exogenously administered 
All in conscious normotensive rats.33 Several of these 
antagonists, including MK-996, displayed good duration 
of action (>5 h) following intravenous (iv) or oral (po) 
administration (Table 1). The benzoylsulfonamide MK-
996 was selected for further in-depth evaluation in 
several animal species.34 This antagonist blocked All-
induced pressor responses in conscious normotensive 
rats, sodium/volume-depleted rhesus monkeys150 and 
conscious normotensive dogs35 in a dose-dependent 
manner following iv or po administration (Tables 1 and 
2), without changing basal blood pressure, heart rate 
or the pressor response to methoxamine (rat and rhesus 
monkeys) or norepinephrine (dog). Both iv and po 
potencies (ED50) of the antagonist in rats and monkeys 
were similar to those of L-158,809 but significantly 
greater than losartan (Table 3).36 The po/iv ED50 ratios 
suggest good oral bioavailability for MK-996 in rats, 
rhesus monkeys, and dogs.37 Figure 1 illustrates a 
comparison of the inhibition of the pressor responses 
to All in rats, rhesus monkeys, and dogs after iv 
administration of MK-996. At a dose which produced 
approximately 80% inhibition (peak response) in each 
species, MK-996 exhibited similar duration in the three 
species. MK-996 (1.0 mg/kg, iv) blocked the All-induced 
pressor response (100% peak response) in anesthetized 
chimpanzees38 (Figure 2). In comparison to L-158,809 
(1.0 mg/kg), MK-996 exhibited a duration of action 
exceeding 24 h, with approximately 69% and 52% 
inhibition of the All pressor response at 10 and 24 h, 
respectively (Figure 2). Similar prolonged duration of 
action (>24 h) was also observed for MK-996 in con
scious dogs after oral administration (1.0 mg/kg) (Table 
2). The pharmacological data presented here demon-
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Table 3. A Comparison of In Vivo Potencies 
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iv 
po 
po/iv 

MK-996 

0.014 
0.067 
5 

rat 

L-158,809 

0.029 
0.023 
0.8 

Losartan 

0.28 
0.66 
2.4 

MK-996 

0.036 
0.10 
3 

rhesus monkeys 

L-158,809 

0.011 
0.10 
9 

Losartan 

0.32 
10.32 
32 

MK-996 

0.017 
0.035 
2 

dogs 

L-158,809 

<0.3a 

ND6 

ND6 

: 73% (peak) inhibition of All pressor response. b Not de te rmined . 

Rat (0.03 mg/kg; 
Rhesus Monkey (0. 
Dog (O.lmn/ke: i.v. 

mg/kg: i.v. 

3 4 5 
Tune after dosing 'hour; 

Figure 1. A comparison of the duration of action of MK-996 
in conscious rats (n = 8), rhesus monkeys (n = 4), and 
normotensive dogs (n = 3). The pressor responses to All was 
measured in each animal after receiving a single iv dose of 
MK-996. Data are expressed as mean ± SEM. 

MK-996 (lmg/kg. i.v. I 
1.-158,809 1ImSiZkC. i.v) 

0 1 2 3 10 24 
Time after dosing (hour) 

Figure 2. Inhibition of All-induced pressor responses follow
ing iv administration of MK-996 or L-158,809 to anesthetized 
chimpanzees (n = 2). Data are expressed as mean ± SEM. 

strate that, unlike L-158,809 and losartan, MK-996 
possesses little interspecies variability in its duration 
of action. This lack of species variability displayed by 
MK-996 may partly be attributed to its structural 
novelty and the absence of glucuronidation39 of the 
acylsulfonamide moiety. Furthermore, there is no 
evidence that MK-996 forms an active metabolite in 
vivo.37 

The antihypertensive activity of MK-996 was evalu
ated in 7-day aortic coarcted conscious rats.15c MK-996 
(3.0 mg/kg, po) reduced the mean arterial blood pressure 
to the normotensive levels with duration of action 
exceeding 6 h and was similar to the responses and 
duration exhibited by enalapril (3.0 mg/kg, po) in these 
animals (Figure 3).40 

In summary, the imidazo[4,5-6]pyridine biphenyl-

200 

X 1 - • — MK-996 (3.0 mg/kg. p.o. I 
Enalapril (3.0 mg/kg. p.o. 

Time after dosing (hour) 

Figure 3. A comparison of antihypertensive effects of MK-
996 and enalapril in aortic coarcted rats(n = 5). Data are 
expressed as mean ± SEM. 

acylsulfonamide, MK-996, represents a potent new class 
of non-tetrazolyl angiotensin II receptor antagonists. 
MK-996 is a highly potent and orally active ATi selec
tive antagonist with excellent in vivo potency and 
duration of action in rats, rhesus monkeys, dogs, and 
chimpanzees. The pharmacological profile of MK-996 
demonstrates lack of species variability in its duration 
of action. In vivo, MK-996 is significantly more potent 
than losartan and does not appear to form any active 
metabolites. The structural novelty and these excellent 
pharmacological properties of MK-996 make it a valu
able tool for investigating the physiological roles of All 
and also a promising new agent for antihypertensive 
therapy. 
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